65 research outputs found

    Towards a Theory of Systems Engineering Processes: A Principal-Agent Model of a One-Shot, Shallow Process

    Full text link
    Systems engineering processes coordinate the effort of different individuals to generate a product satisfying certain requirements. As the involved engineers are self-interested agents, the goals at different levels of the systems engineering hierarchy may deviate from the system-level goals which may cause budget and schedule overruns. Therefore, there is a need of a systems engineering theory that accounts for the human behavior in systems design. To this end, the objective of this paper is to develop and analyze a principal-agent model of a one-shot (single iteration), shallow (one level of hierarchy) systems engineering process. We assume that the systems engineer maximizes the expected utility of the system, while the subsystem engineers seek to maximize their expected utilities. Furthermore, the systems engineer is unable to monitor the effort of the subsystem engineer and may not have a complete information about their types or the complexity of the design task. However, the systems engineer can incentivize the subsystem engineers by proposing specific contracts. To obtain an optimal incentive, we pose and solve numerically a bi-level optimization problem. Through extensive simulations, we study the optimal incentives arising from different system-level value functions under various combinations of effort costs, problem-solving skills, and task complexities

    Living on the Edge Dependably: New Challenges and Solution Directions

    Get PDF
    Edge computing is the practice of placing computing resources at the edges of the Internet in close proximity to devices and information sources. This, much like a cache on a CPU, increases bandwidth and reduces latency for applications but at a potential cost of dependability and capacity
    • …
    corecore